

Superconducting system-on-chip filterbank spectrometers for hyperspectral microwave atmospheric sounding

C.N. Thomas^{1,*}, S. Withington¹, D.J. Goldie¹, P. Hargrave², A. Orlando², R.V. Sudiwala² and P.K. Dongre²

¹Cavendish Laboratory, Cambridge University

²School of Physics and Astronomy, Cardiff University

*cnt22@cam.ac.uk

NCEO Annual Conference 02-05 September 2019

Microwave atmospheric sounding

 Instruments measure total power in narrow spectral channels in range 20-250GHz.

ARDIF

ERDY

- O₂ line complex at 60GHz used for temperature sounding.
- H₂O line at 183GHz used for humidity sounding.

AMSU-A and MHS channels as taken from www.eumetsat.int

Enhancing sounder capability

- The cloud-penetrating capabilities of microwave sounders make them important inputs for numerical weather prediction.
- Challenges for improving performance:
 - 'Hyperspectral' capability delivering large numbers (hundreds) of narrower bandwidth (R > 500) channels.
 - **Improving/maintaining radiometric sensitivity** on moving to hyperspectral operation.
- Superconducting system-on-chip filterbank spectrometers are a way of meeting this challenge... (and others, such as ice cloud studies)

Superconducting on-chip filterbank spectrometers

Advantages: Physically small channels

- Operate at signal frequency, so distributed filters are mm sized for frequencies above 60 GHz!
- Slow-wave effects on superconducting lines further reduce this dimension.
- Ohmic losses negligible, so dimensions can be reduced without degrading performance (e.g. filter bandwidth, efficiency).
- Can fit large number of channels on small chip area enables hyperspectral instrument.

Advantages: Transition Edge Sensors (TESs)

- Superconducting power detector.
- **Extremely sensitive**: NEP < 10⁻¹⁶ W/Hz^{0.5} for operation at 350mK.
- Wideband, high-efficiency, coupling to transmission line circuits up to 1THz. Ideal for this application.
- Tuneable operating temperature: NEP scales only as T.
- Favourable operating characteristics: linearity, high dynamic range and insensitivity to changes in background loading.
- Significant operational experience with mature multiplexing technology. For smaller channel counts (<50), a multiplexer would not be necessary.

Advantages: Operational

- Wide instantaneous observing bandwidth (limited by feed(s))
- Control over channel placement and shape, so can optimize scientific return for given number of detectors.

- Eliminates mechanical interfaces between components improves ruggedness.
- Chips straightforward to reproduce.

The HYMAS project

- Stands for HYperspectral Microwave Atmospheric Sounder.
- CEOI funded pathfinder project to examine technology.
- Set of devices fabricated to demonstrate key technologies for temperature sounding on the 60GHz O₂ line.
- Retrieval studies to model instrument performance.

Demonstrator chip targets:

Parameter	Target
Operating temperature	350mK
Channels per chip	10
Operating frequency range	45-65 GHz
Spectral resolution ($\Delta v / v$)	300-1000
Feed	WR15
Detector dark NEP	11 aW/Hz ^{0.5}
Detector power handling	1.4 pW
Detector response time	0.4ms

UNIVERSITY OF CAMBRIDGE

Demonstrator chips

Demonstrator chips

Technology

Superconducting microstrip filter bank

MS coupled Ti/AI TES

Detector packaging

Experimental characterisation

WG to coax transition

Coax to room temperature for CW signal – (40-65GHz)

Detector package on 50mK stage

Adiabatic refrigerator (ADR)

4K stage of cryostat

Measured channel shapes

Measured channel shapes (more detail)

HYMAS-X (HYMAS eXtended)

• Follow on project underway, with the following strands...

HF Devices

- Demonstrate operation at 183GHz.
- Ultra wideband feed study.
- Compactification.

Enhanced LF Devices

- Improved 60GHz design.
- Higher R filters with increased efficiency.
- Improved detectors.
- Operational aids (calibrators).

Instrument planning

- Development of demonstrator concept.
- Cooling chains for HAP and LEO deployment.

Conclusions

- Superconducting on-chip spectrometers are a promising technology for hyperspectral microwave sounders (and potentially ice cloud studies).
- See Dongre (doi: <u>10.1117/12.2500516</u>) for analysis of potential scientific performance.
- Thank you to CEOI for funding this work.

Chris Thomas, cnt22@cam.ac.uk

